

Unit 3 Summary

Prior Learning	Grade 7, Unit 3	Later in Grade 7	Grade 8
Grade 6 • Area of triangles and quadrilaterals • Evaluating formulas	 Circumference of a circle Area of a circle	Unit 6 ■ Solve equations	 Volume of cylinders, cones, and spheres
Grade 7 • Proportional relationships			

Circumference of a Circle

Circles are shapes made up of all the points that are the same distance away from a center.

Here are some common measurements of a circle.

- The radius goes from the center to the edge of a circle.
- The **diameter** goes from one edge of a circle to the other and passes through the center.
- The circumference is the distance around the circle.

There is a proportional relationship between the diameter and circumference of a circle.

The constant of proportionality of this relationship is $\,\pi$ (pronounced "pie").

Common approximations for π are $3.14\,,\ \frac{22}{7}$, and $3.14159\,,$ but none of these are exactly $\pi\,.$

The relationship between the diameter and circumference of a circle is exactly $C=\pi d$.

If AP is 5 inches, then AB is $2 \cdot 5 = 10$ inches.

The circumference is $C = \pi(10) = 10\pi$ inches, or about 31.4 inches.

desmos

Unit 7.3, Family Resource

Area of a Circle

We can estimate the area of a circle using radius squares.

A little more than 3 radius squares cover any circle, so this circle's area would be a little more than $3 \cdot 4^2 = 48$ square units.

The relationship between the radius and area of a circle is exactly $A=\pi r^2$.

The area of the circle above is $\pi(4)^2 = 16\pi \approx 50.27$ square units.

We can prove that this formula is correct by cutting a circle into rings and rearranging the rings into a triangle.

The height of the triangle is the radius of the circle.

The base of the triangle is its circumference.

The area of the triangle is:

$$A = \frac{1}{2} \cdot b \cdot h$$

$$= \frac{1}{2} \cdot 8\pi \cdot 4$$

$$= 16\pi \text{ square units.}$$

Try This at Home

Circumference of a Circle

- 1.1 *AP* is a radius of this circle. List every other radius.
- 1.2 *EF* is a diameter of this circle. List every other diameter.

A candle has a diameter of 12 centimeters.

- 2.1 What is the distance from the edge of the candle to the wick (at the center)?
- 2.2 Would a ribbon 40 centimeters long wrap around the candle? Explain your thinking.
- 3. Determine the total perimeter of this figure.

Area of a Circle

A rectangular wooden board, 20 inches wide and 40 inches long, has a circular hole cut out of it.

- 4.1 If the diameter of the circle is 6 inches, what is the area of the circular hole?
- 4.2 What is the area of the board after the circle is removed?

desmos

Unit 7.3, Family Resource

5. Determine the total shaded area of this figure.

Solutions:

- 1.1 BP, CP, DP, EP, FP
- $1.2 \quad AB \ CD$
- 2.1 6 centimeters. This would be the radius of the circle, which is half of the diameter.
- 2.2 Yes.

Explanations vary. The distance around the candle is its circumference, which would be $C = \pi(12) = 12\pi \approx 37.7$ centimeters. This means a 40-centimeter ribbon would wrap around.

3. $4\pi + 10$ units

The perimeter of the outside of the shape is $\frac{3}{4} \cdot \pi \cdot 4 = 3\pi$ units plus 8 units for the straight edges. The perimeter of the inside of the shape is 2 units plus $\frac{1}{2} \cdot \pi \cdot 2 = \pi$ units. $(3\pi + 8) + (\pi + 2) = 4\pi + 10$ units.

- 4.1 $\pi(3^2) = 9\pi \approx 28.3$ square inches
- 4.2 $800 36\pi \approx 686.9$ square inches
- 5. $2.5\pi + 8$ square units

The area of the large shape is $\frac{3}{4} \cdot \pi \cdot (2^2) = 3\pi$ square units for the part of a circle plus $2 \cdot 4 = 8$ square units for the area of the rectangle. The area of the hole is $\frac{1}{2} \cdot \pi \cdot (1^2) = 0.5\pi$ square units. $(3\pi + 8) - (0.5\pi) = 2.5\pi + 8$ square units.